| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ismid.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | ismid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | ismid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | ismid.1 | ⊢ ( 𝜑  →  𝐺 DimTarskiG≥ 2 ) | 
						
							| 6 |  | lmif.m | ⊢ 𝑀  =  ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) | 
						
							| 7 |  | lmif.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 8 |  | lmif.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 9 |  | lmicl.1 | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | lmieq.c | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 11 |  | lmieq.d | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 12 |  | fveqeq2 | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝑀 ‘ 𝑏 )  =  ( 𝑀 ‘ 𝐵 )  ↔  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 13 |  | fveqeq2 | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑀 ‘ 𝑏 )  =  ( 𝑀 ‘ 𝐵 )  ↔  ( 𝑀 ‘ 𝐵 )  =  ( 𝑀 ‘ 𝐵 ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 10 | lmicl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 14 | lmireu | ⊢ ( 𝜑  →  ∃! 𝑏  ∈  𝑃 ( 𝑀 ‘ 𝑏 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  =  ( 𝑀 ‘ 𝐵 ) ) | 
						
							| 17 | 12 13 15 9 10 11 16 | reu2eqd | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |