| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ismid.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | ismid.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | ismid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | ismid.1 |  |-  ( ph -> G TarskiGDim>= 2 ) | 
						
							| 6 |  | lmif.m |  |-  M = ( ( lInvG ` G ) ` D ) | 
						
							| 7 |  | lmif.l |  |-  L = ( LineG ` G ) | 
						
							| 8 |  | lmif.d |  |-  ( ph -> D e. ran L ) | 
						
							| 9 |  | lmicl.1 |  |-  ( ph -> A e. P ) | 
						
							| 10 |  | lmieq.c |  |-  ( ph -> B e. P ) | 
						
							| 11 |  | lmieq.d |  |-  ( ph -> ( M ` A ) = ( M ` B ) ) | 
						
							| 12 |  | fveqeq2 |  |-  ( b = A -> ( ( M ` b ) = ( M ` B ) <-> ( M ` A ) = ( M ` B ) ) ) | 
						
							| 13 |  | fveqeq2 |  |-  ( b = B -> ( ( M ` b ) = ( M ` B ) <-> ( M ` B ) = ( M ` B ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 10 | lmicl |  |-  ( ph -> ( M ` B ) e. P ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 14 | lmireu |  |-  ( ph -> E! b e. P ( M ` b ) = ( M ` B ) ) | 
						
							| 16 |  | eqidd |  |-  ( ph -> ( M ` B ) = ( M ` B ) ) | 
						
							| 17 | 12 13 15 9 10 11 16 | reu2eqd |  |-  ( ph -> A = B ) |