Metamath Proof Explorer


Theorem lmieq

Description: Equality deduction for line mirroring. Theorem 10.7 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p
|- P = ( Base ` G )
ismid.d
|- .- = ( dist ` G )
ismid.i
|- I = ( Itv ` G )
ismid.g
|- ( ph -> G e. TarskiG )
ismid.1
|- ( ph -> G TarskiGDim>= 2 )
lmif.m
|- M = ( ( lInvG ` G ) ` D )
lmif.l
|- L = ( LineG ` G )
lmif.d
|- ( ph -> D e. ran L )
lmicl.1
|- ( ph -> A e. P )
lmieq.c
|- ( ph -> B e. P )
lmieq.d
|- ( ph -> ( M ` A ) = ( M ` B ) )
Assertion lmieq
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 ismid.p
 |-  P = ( Base ` G )
2 ismid.d
 |-  .- = ( dist ` G )
3 ismid.i
 |-  I = ( Itv ` G )
4 ismid.g
 |-  ( ph -> G e. TarskiG )
5 ismid.1
 |-  ( ph -> G TarskiGDim>= 2 )
6 lmif.m
 |-  M = ( ( lInvG ` G ) ` D )
7 lmif.l
 |-  L = ( LineG ` G )
8 lmif.d
 |-  ( ph -> D e. ran L )
9 lmicl.1
 |-  ( ph -> A e. P )
10 lmieq.c
 |-  ( ph -> B e. P )
11 lmieq.d
 |-  ( ph -> ( M ` A ) = ( M ` B ) )
12 fveqeq2
 |-  ( b = A -> ( ( M ` b ) = ( M ` B ) <-> ( M ` A ) = ( M ` B ) ) )
13 fveqeq2
 |-  ( b = B -> ( ( M ` b ) = ( M ` B ) <-> ( M ` B ) = ( M ` B ) ) )
14 1 2 3 4 5 6 7 8 10 lmicl
 |-  ( ph -> ( M ` B ) e. P )
15 1 2 3 4 5 6 7 8 14 lmireu
 |-  ( ph -> E! b e. P ( M ` b ) = ( M ` B ) )
16 eqidd
 |-  ( ph -> ( M ` B ) = ( M ` B ) )
17 12 13 15 9 10 11 16 reu2eqd
 |-  ( ph -> A = B )