| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
lmicl.1 |
|- ( ph -> A e. P ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
lmicl |
|- ( ph -> ( M ` A ) e. P ) |
| 11 |
1 2 3 4 5 6 7 8 9
|
lmilmi |
|- ( ph -> ( M ` ( M ` A ) ) = A ) |
| 12 |
4
|
ad2antrr |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> G e. TarskiG ) |
| 13 |
5
|
ad2antrr |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> G TarskiGDim>= 2 ) |
| 14 |
8
|
ad2antrr |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> D e. ran L ) |
| 15 |
|
simplr |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> b e. P ) |
| 16 |
1 2 3 12 13 6 7 14 15
|
lmilmi |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> ( M ` ( M ` b ) ) = b ) |
| 17 |
|
simpr |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> ( M ` b ) = A ) |
| 18 |
17
|
fveq2d |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> ( M ` ( M ` b ) ) = ( M ` A ) ) |
| 19 |
16 18
|
eqtr3d |
|- ( ( ( ph /\ b e. P ) /\ ( M ` b ) = A ) -> b = ( M ` A ) ) |
| 20 |
19
|
ex |
|- ( ( ph /\ b e. P ) -> ( ( M ` b ) = A -> b = ( M ` A ) ) ) |
| 21 |
20
|
ralrimiva |
|- ( ph -> A. b e. P ( ( M ` b ) = A -> b = ( M ` A ) ) ) |
| 22 |
|
fveqeq2 |
|- ( b = ( M ` A ) -> ( ( M ` b ) = A <-> ( M ` ( M ` A ) ) = A ) ) |
| 23 |
22
|
eqreu |
|- ( ( ( M ` A ) e. P /\ ( M ` ( M ` A ) ) = A /\ A. b e. P ( ( M ` b ) = A -> b = ( M ` A ) ) ) -> E! b e. P ( M ` b ) = A ) |
| 24 |
10 11 21 23
|
syl3anc |
|- ( ph -> E! b e. P ( M ` b ) = A ) |