Metamath Proof Explorer


Theorem lmireu

Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmicl.1 φAP
Assertion lmireu φ∃!bPMb=A

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmicl.1 φAP
10 1 2 3 4 5 6 7 8 9 lmicl φMAP
11 1 2 3 4 5 6 7 8 9 lmilmi φMMA=A
12 4 ad2antrr φbPMb=AG𝒢Tarski
13 5 ad2antrr φbPMb=AGDim𝒢2
14 8 ad2antrr φbPMb=ADranL
15 simplr φbPMb=AbP
16 1 2 3 12 13 6 7 14 15 lmilmi φbPMb=AMMb=b
17 simpr φbPMb=AMb=A
18 17 fveq2d φbPMb=AMMb=MA
19 16 18 eqtr3d φbPMb=Ab=MA
20 19 ex φbPMb=Ab=MA
21 20 ralrimiva φbPMb=Ab=MA
22 fveqeq2 b=MAMb=AMMA=A
23 22 eqreu MAPMMA=AbPMb=Ab=MA∃!bPMb=A
24 10 11 21 23 syl3anc φ∃!bPMb=A