Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismid.p | |
|
ismid.d | |
||
ismid.i | |
||
ismid.g | |
||
ismid.1 | |
||
lmif.m | |
||
lmif.l | |
||
lmif.d | |
||
lmicl.1 | |
||
Assertion | lmireu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | |
|
2 | ismid.d | |
|
3 | ismid.i | |
|
4 | ismid.g | |
|
5 | ismid.1 | |
|
6 | lmif.m | |
|
7 | lmif.l | |
|
8 | lmif.d | |
|
9 | lmicl.1 | |
|
10 | 1 2 3 4 5 6 7 8 9 | lmicl | |
11 | 1 2 3 4 5 6 7 8 9 | lmilmi | |
12 | 4 | ad2antrr | |
13 | 5 | ad2antrr | |
14 | 8 | ad2antrr | |
15 | simplr | |
|
16 | 1 2 3 12 13 6 7 14 15 | lmilmi | |
17 | simpr | |
|
18 | 17 | fveq2d | |
19 | 16 18 | eqtr3d | |
20 | 19 | ex | |
21 | 20 | ralrimiva | |
22 | fveqeq2 | |
|
23 | 22 | eqreu | |
24 | 10 11 21 23 | syl3anc | |