Metamath Proof Explorer


Theorem lmmbr3

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J=MetOpenD
lmmbr.3 φD∞MetX
lmmbr3.5 Z=M
lmmbr3.6 φM
Assertion lmmbr3 φFtJPFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x

Proof

Step Hyp Ref Expression
1 lmmbr.2 J=MetOpenD
2 lmmbr.3 φD∞MetX
3 lmmbr3.5 Z=M
4 lmmbr3.6 φM
5 1 2 lmmbr2 φFtJPFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
6 3 rexuz3 MjZkjkdomFFkXFkDP<xjkjkdomFFkXFkDP<x
7 4 6 syl φjZkjkdomFFkXFkDP<xjkjkdomFFkXFkDP<x
8 7 ralbidv φx+jZkjkdomFFkXFkDP<xx+jkjkdomFFkXFkDP<x
9 8 3anbi3d φFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<xFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
10 5 9 bitr4d φFtJPFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x