Metamath Proof Explorer


Theorem lmodpropd

Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lmodpropd.1 φB=BaseK
lmodpropd.2 φB=BaseL
lmodpropd.3 φxByBx+Ky=x+Ly
lmodpropd.4 φF=ScalarK
lmodpropd.5 φF=ScalarL
lmodpropd.6 P=BaseF
lmodpropd.7 φxPyBxKy=xLy
Assertion lmodpropd φKLModLLMod

Proof

Step Hyp Ref Expression
1 lmodpropd.1 φB=BaseK
2 lmodpropd.2 φB=BaseL
3 lmodpropd.3 φxByBx+Ky=x+Ly
4 lmodpropd.4 φF=ScalarK
5 lmodpropd.5 φF=ScalarL
6 lmodpropd.6 P=BaseF
7 lmodpropd.7 φxPyBxKy=xLy
8 eqid ScalarK=ScalarK
9 eqid ScalarL=ScalarL
10 4 fveq2d φBaseF=BaseScalarK
11 6 10 eqtrid φP=BaseScalarK
12 5 fveq2d φBaseF=BaseScalarL
13 6 12 eqtrid φP=BaseScalarL
14 4 5 eqtr3d φScalarK=ScalarL
15 14 adantr φxPyPScalarK=ScalarL
16 15 fveq2d φxPyP+ScalarK=+ScalarL
17 16 oveqd φxPyPx+ScalarKy=x+ScalarLy
18 15 fveq2d φxPyPScalarK=ScalarL
19 18 oveqd φxPyPxScalarKy=xScalarLy
20 1 2 8 9 11 13 3 17 19 7 lmodprop2d φKLModLLMod