Metamath Proof Explorer


Theorem lmodvsass

Description: Associative law for scalar product. ( ax-hvmulass analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lmodvsass.v V=BaseW
lmodvsass.f F=ScalarW
lmodvsass.s ·˙=W
lmodvsass.k K=BaseF
lmodvsass.t ×˙=F
Assertion lmodvsass WLModQKRKXVQ×˙R·˙X=Q·˙R·˙X

Proof

Step Hyp Ref Expression
1 lmodvsass.v V=BaseW
2 lmodvsass.f F=ScalarW
3 lmodvsass.s ·˙=W
4 lmodvsass.k K=BaseF
5 lmodvsass.t ×˙=F
6 eqid +W=+W
7 eqid +F=+F
8 eqid 1F=1F
9 1 6 3 2 4 7 5 8 lmodlema WLModQKRKXVXVR·˙XVR·˙X+WX=R·˙X+WR·˙XQ+FR·˙X=Q·˙X+WR·˙XQ×˙R·˙X=Q·˙R·˙X1F·˙X=X
10 9 simprld WLModQKRKXVXVQ×˙R·˙X=Q·˙R·˙X
11 10 3expa WLModQKRKXVXVQ×˙R·˙X=Q·˙R·˙X
12 11 anabsan2 WLModQKRKXVQ×˙R·˙X=Q·˙R·˙X
13 12 exp42 WLModQKRKXVQ×˙R·˙X=Q·˙R·˙X
14 13 3imp2 WLModQKRKXVQ×˙R·˙X=Q·˙R·˙X