Metamath Proof Explorer


Theorem lnfn0

Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfn0 TLinFnT0=0

Proof

Step Hyp Ref Expression
1 fveq1 T=ifTLinFnT×0T0=ifTLinFnT×00
2 1 eqeq1d T=ifTLinFnT×0T0=0ifTLinFnT×00=0
3 0lnfn ×0LinFn
4 3 elimel ifTLinFnT×0LinFn
5 4 lnfn0i ifTLinFnT×00=0
6 2 5 dedth TLinFnT0=0