Metamath Proof Explorer


Theorem lnof

Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnof.1 X=BaseSetU
lnof.2 Y=BaseSetW
lnof.7 L=ULnOpW
Assertion lnof UNrmCVecWNrmCVecTLT:XY

Proof

Step Hyp Ref Expression
1 lnof.1 X=BaseSetU
2 lnof.2 Y=BaseSetW
3 lnof.7 L=ULnOpW
4 eqid +vU=+vU
5 eqid +vW=+vW
6 eqid 𝑠OLDU=𝑠OLDU
7 eqid 𝑠OLDW=𝑠OLDW
8 1 2 4 5 6 7 3 islno UNrmCVecWNrmCVecTLT:XYxyXzXTx𝑠OLDUy+vUz=x𝑠OLDWTy+vWTz
9 8 simprbda UNrmCVecWNrmCVecTLT:XY
10 9 3impa UNrmCVecWNrmCVecTLT:XY