Metamath Proof Explorer


Theorem lnopunilem2

Description: Lemma for lnopunii . (Contributed by NM, 12-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses lnopunilem.1 TLinOp
lnopunilem.2 xnormTx=normx
lnopunilem.3 A
lnopunilem.4 B
Assertion lnopunilem2 TAihTB=AihB

Proof

Step Hyp Ref Expression
1 lnopunilem.1 TLinOp
2 lnopunilem.2 xnormTx=normx
3 lnopunilem.3 A
4 lnopunilem.4 B
5 fvoveq1 y=ifyy0yTAihTB=ifyy0TAihTB
6 fvoveq1 y=ifyy0yAihB=ifyy0AihB
7 5 6 eqeq12d y=ifyy0yTAihTB=yAihBifyy0TAihTB=ifyy0AihB
8 0cn 0
9 8 elimel ifyy0
10 1 2 3 4 9 lnopunilem1 ifyy0TAihTB=ifyy0AihB
11 7 10 dedth yyTAihTB=yAihB
12 11 rgen yyTAihTB=yAihB
13 1 lnopfi T:
14 13 ffvelcdmi ATA
15 3 14 ax-mp TA
16 13 ffvelcdmi BTB
17 4 16 ax-mp TB
18 15 17 hicli TAihTB
19 3 4 hicli AihB
20 recan TAihTBAihByyTAihTB=yAihBTAihTB=AihB
21 18 19 20 mp2an yyTAihTB=yAihBTAihTB=AihB
22 12 21 mpbi TAihTB=AihB