Metamath Proof Explorer


Theorem lnopunii

Description: If a linear operator (whose range is ~H ) is idempotent in the norm, the operator is unitary. Similar to theorem in AkhiezerGlazman p. 73. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopuni.1 TLinOp
lnopuni.2 T:onto
lnopuni.3 xnormTx=normx
Assertion lnopunii TUniOp

Proof

Step Hyp Ref Expression
1 lnopuni.1 TLinOp
2 lnopuni.2 T:onto
3 lnopuni.3 xnormTx=normx
4 fveq2 x=ifxx0Tx=Tifxx0
5 4 oveq1d x=ifxx0TxihTy=Tifxx0ihTy
6 oveq1 x=ifxx0xihy=ifxx0ihy
7 5 6 eqeq12d x=ifxx0TxihTy=xihyTifxx0ihTy=ifxx0ihy
8 fveq2 y=ifyy0Ty=Tifyy0
9 8 oveq2d y=ifyy0Tifxx0ihTy=Tifxx0ihTifyy0
10 oveq2 y=ifyy0ifxx0ihy=ifxx0ihifyy0
11 9 10 eqeq12d y=ifyy0Tifxx0ihTy=ifxx0ihyTifxx0ihTifyy0=ifxx0ihifyy0
12 ifhvhv0 ifxx0
13 ifhvhv0 ifyy0
14 1 3 12 13 lnopunilem2 Tifxx0ihTifyy0=ifxx0ihifyy0
15 7 11 14 dedth2h xyTxihTy=xihy
16 15 rgen2 xyTxihTy=xihy
17 elunop TUniOpT:ontoxyTxihTy=xihy
18 2 16 17 mpbir2an TUniOp