Description: If a linear operator (whose range is ~H ) is idempotent in the norm, the operator is unitary. Similar to theorem in AkhiezerGlazman p. 73. (Contributed by NM, 23-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lnopuni.1 | |
|
lnopuni.2 | |
||
lnopuni.3 | |
||
Assertion | lnopunii | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopuni.1 | |
|
2 | lnopuni.2 | |
|
3 | lnopuni.3 | |
|
4 | fveq2 | |
|
5 | 4 | oveq1d | |
6 | oveq1 | |
|
7 | 5 6 | eqeq12d | |
8 | fveq2 | |
|
9 | 8 | oveq2d | |
10 | oveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | ifhvhv0 | |
|
13 | ifhvhv0 | |
|
14 | 1 3 12 13 | lnopunilem2 | |
15 | 7 11 14 | dedth2h | |
16 | 15 | rgen2 | |
17 | elunop | |
|
18 | 2 16 17 | mpbir2an | |