| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
|
| 2 |
|
elunop |
|
| 3 |
2
|
simplbi |
|
| 4 |
|
unopnorm |
|
| 5 |
4
|
ralrimiva |
|
| 6 |
1 3 5
|
3jca |
|
| 7 |
|
eleq1 |
|
| 8 |
|
eleq1 |
|
| 9 |
|
foeq1 |
|
| 10 |
|
2fveq3 |
|
| 11 |
|
fveq2 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
12
|
cbvralvw |
|
| 14 |
|
fveq1 |
|
| 15 |
14
|
fveqeq2d |
|
| 16 |
15
|
ralbidv |
|
| 17 |
13 16
|
bitrid |
|
| 18 |
8 9 17
|
3anbi123d |
|
| 19 |
|
eleq1 |
|
| 20 |
|
foeq1 |
|
| 21 |
|
fveq1 |
|
| 22 |
21
|
fveqeq2d |
|
| 23 |
22
|
ralbidv |
|
| 24 |
19 20 23
|
3anbi123d |
|
| 25 |
|
idlnop |
|
| 26 |
|
f1oi |
|
| 27 |
|
f1ofo |
|
| 28 |
26 27
|
ax-mp |
|
| 29 |
|
fvresi |
|
| 30 |
29
|
fveq2d |
|
| 31 |
30
|
rgen |
|
| 32 |
25 28 31
|
3pm3.2i |
|
| 33 |
18 24 32
|
elimhyp |
|
| 34 |
33
|
simp1i |
|
| 35 |
33
|
simp2i |
|
| 36 |
33
|
simp3i |
|
| 37 |
34 35 36
|
lnopunii |
|
| 38 |
7 37
|
dedth |
|
| 39 |
6 38
|
impbii |
|