Metamath Proof Explorer


Theorem unopnorm

Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion unopnorm TUniOpAnormTA=normA

Proof

Step Hyp Ref Expression
1 unopf1o TUniOpT:1-1 onto
2 f1of T:1-1 ontoT:
3 1 2 syl TUniOpT:
4 3 ffvelcdmda TUniOpATA
5 normcl TAnormTA
6 4 5 syl TUniOpAnormTA
7 normcl AnormA
8 7 adantl TUniOpAnormA
9 normge0 TA0normTA
10 4 9 syl TUniOpA0normTA
11 normge0 A0normA
12 11 adantl TUniOpA0normA
13 unop TUniOpAATAihTA=AihA
14 13 3anidm23 TUniOpATAihTA=AihA
15 normsq TAnormTA2=TAihTA
16 4 15 syl TUniOpAnormTA2=TAihTA
17 normsq AnormA2=AihA
18 17 adantl TUniOpAnormA2=AihA
19 14 16 18 3eqtr4d TUniOpAnormTA2=normA2
20 6 8 10 12 19 sq11d TUniOpAnormTA=normA