| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unopf1o |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
| 2 |
|
f1of |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 |
3
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 5 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 7 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
|
normge0 |
⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
| 10 |
4 9
|
syl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
| 11 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 13 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) |
| 14 |
13
|
3anidm23 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) |
| 15 |
|
normsq |
⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 16 |
4 15
|
syl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 17 |
|
normsq |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 19 |
14 16 18
|
3eqtr4d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
| 20 |
6 8 10 12 19
|
sq11d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |