| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unopf1o |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
| 2 |
|
f1ocnv |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –1-1-onto→ ℋ ) |
| 3 |
|
f1ofo |
⊢ ( ◡ 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –onto→ ℋ ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –onto→ ℋ ) |
| 5 |
1 4
|
syl |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ –onto→ ℋ ) |
| 6 |
|
simpl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑇 ∈ UniOp ) |
| 7 |
|
fof |
⊢ ( ◡ 𝑇 : ℋ –onto→ ℋ → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 8 |
5 7
|
syl |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 9 |
8
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 10 |
9
|
adantrr |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 11 |
8
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 12 |
11
|
adantrl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 13 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( ◡ 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( ◡ 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 14 |
6 10 12 13
|
syl3anc |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 15 |
|
f1ocnvfv2 |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) = 𝑥 ) |
| 16 |
15
|
adantrr |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) = 𝑥 ) |
| 17 |
|
f1ocnvfv2 |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) = 𝑦 ) |
| 18 |
17
|
adantrl |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) = 𝑦 ) |
| 19 |
16 18
|
oveq12d |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 20 |
1 19
|
sylan |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑥 ) ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 21 |
14 20
|
eqtr3d |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 22 |
21
|
ralrimivva |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 23 |
|
elunop |
⊢ ( ◡ 𝑇 ∈ UniOp ↔ ( ◡ 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ◡ 𝑇 ‘ 𝑥 ) ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 24 |
5 22 23
|
sylanbrc |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) |