Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvunop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unopf1o | |
|
2 | f1ocnv | |
|
3 | f1ofo | |
|
4 | 2 3 | syl | |
5 | 1 4 | syl | |
6 | simpl | |
|
7 | fof | |
|
8 | 5 7 | syl | |
9 | 8 | ffvelcdmda | |
10 | 9 | adantrr | |
11 | 8 | ffvelcdmda | |
12 | 11 | adantrl | |
13 | unop | |
|
14 | 6 10 12 13 | syl3anc | |
15 | f1ocnvfv2 | |
|
16 | 15 | adantrr | |
17 | f1ocnvfv2 | |
|
18 | 17 | adantrl | |
19 | 16 18 | oveq12d | |
20 | 1 19 | sylan | |
21 | 14 20 | eqtr3d | |
22 | 21 | ralrimivva | |
23 | elunop | |
|
24 | 5 22 23 | sylanbrc | |