Metamath Proof Explorer


Theorem cnvunop

Description: The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvunop TUniOpT-1UniOp

Proof

Step Hyp Ref Expression
1 unopf1o TUniOpT:1-1 onto
2 f1ocnv T:1-1 ontoT-1:1-1 onto
3 f1ofo T-1:1-1 ontoT-1:onto
4 2 3 syl T:1-1 ontoT-1:onto
5 1 4 syl TUniOpT-1:onto
6 simpl TUniOpxyTUniOp
7 fof T-1:ontoT-1:
8 5 7 syl TUniOpT-1:
9 8 ffvelcdmda TUniOpxT-1x
10 9 adantrr TUniOpxyT-1x
11 8 ffvelcdmda TUniOpyT-1y
12 11 adantrl TUniOpxyT-1y
13 unop TUniOpT-1xT-1yTT-1xihTT-1y=T-1xihT-1y
14 6 10 12 13 syl3anc TUniOpxyTT-1xihTT-1y=T-1xihT-1y
15 f1ocnvfv2 T:1-1 ontoxTT-1x=x
16 15 adantrr T:1-1 ontoxyTT-1x=x
17 f1ocnvfv2 T:1-1 ontoyTT-1y=y
18 17 adantrl T:1-1 ontoxyTT-1y=y
19 16 18 oveq12d T:1-1 ontoxyTT-1xihTT-1y=xihy
20 1 19 sylan TUniOpxyTT-1xihTT-1y=xihy
21 14 20 eqtr3d TUniOpxyT-1xihT-1y=xihy
22 21 ralrimivva TUniOpxyT-1xihT-1y=xihy
23 elunop T-1UniOpT-1:ontoxyT-1xihT-1y=xihy
24 5 22 23 sylanbrc TUniOpT-1UniOp