Metamath Proof Explorer


Theorem unopf1o

Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion unopf1o TUniOpT:1-1 onto

Proof

Step Hyp Ref Expression
1 elunop TUniOpT:ontoxyTxihTy=xihy
2 1 simplbi TUniOpT:onto
3 fof T:ontoT:
4 2 3 syl TUniOpT:
5 unop TUniOpxxTxihTx=xihx
6 5 3anidm23 TUniOpxTxihTx=xihx
7 6 3adant3 TUniOpxyTxihTx=xihx
8 unop TUniOpyyTyihTy=yihy
9 8 3anidm23 TUniOpyTyihTy=yihy
10 9 3adant2 TUniOpxyTyihTy=yihy
11 7 10 oveq12d TUniOpxyTxihTx+TyihTy=xihx+yihy
12 unop TUniOpxyTxihTy=xihy
13 unop TUniOpyxTyihTx=yihx
14 13 3com23 TUniOpxyTyihTx=yihx
15 12 14 oveq12d TUniOpxyTxihTy+TyihTx=xihy+yihx
16 11 15 oveq12d TUniOpxyTxihTx+TyihTy-TxihTy+TyihTx=xihx+yihy-xihy+yihx
17 16 3expb TUniOpxyTxihTx+TyihTy-TxihTy+TyihTx=xihx+yihy-xihy+yihx
18 ffvelcdm T:xTx
19 ffvelcdm T:yTy
20 18 19 anim12dan T:xyTxTy
21 4 20 sylan TUniOpxyTxTy
22 normlem9at TxTyTx-TyihTx-Ty=TxihTx+TyihTy-TxihTy+TyihTx
23 21 22 syl TUniOpxyTx-TyihTx-Ty=TxihTx+TyihTy-TxihTy+TyihTx
24 normlem9at xyx-yihx-y=xihx+yihy-xihy+yihx
25 24 adantl TUniOpxyx-yihx-y=xihx+yihy-xihy+yihx
26 17 23 25 3eqtr4rd TUniOpxyx-yihx-y=Tx-TyihTx-Ty
27 26 eqeq1d TUniOpxyx-yihx-y=0Tx-TyihTx-Ty=0
28 hvsubcl xyx-y
29 his6 x-yx-yihx-y=0x-y=0
30 28 29 syl xyx-yihx-y=0x-y=0
31 hvsubeq0 xyx-y=0x=y
32 30 31 bitrd xyx-yihx-y=0x=y
33 32 adantl TUniOpxyx-yihx-y=0x=y
34 hvsubcl TxTyTx-Ty
35 his6 Tx-TyTx-TyihTx-Ty=0Tx-Ty=0
36 34 35 syl TxTyTx-TyihTx-Ty=0Tx-Ty=0
37 hvsubeq0 TxTyTx-Ty=0Tx=Ty
38 36 37 bitrd TxTyTx-TyihTx-Ty=0Tx=Ty
39 21 38 syl TUniOpxyTx-TyihTx-Ty=0Tx=Ty
40 27 33 39 3bitr3rd TUniOpxyTx=Tyx=y
41 40 biimpd TUniOpxyTx=Tyx=y
42 41 ralrimivva TUniOpxyTx=Tyx=y
43 dff13 T:1-1T:xyTx=Tyx=y
44 4 42 43 sylanbrc TUniOpT:1-1
45 df-f1o T:1-1 ontoT:1-1T:onto
46 44 2 45 sylanbrc TUniOpT:1-1 onto