| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
|
| 2 |
|
lnopf |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
nmopval |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nmopsetretHIL |
|
| 8 |
|
ressxr |
|
| 9 |
7 8
|
sstrdi |
|
| 10 |
3 9
|
syl |
|
| 11 |
10
|
adantl |
|
| 12 |
|
1xr |
|
| 13 |
11 12
|
jctir |
|
| 14 |
|
vex |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
anbi2d |
|
| 17 |
16
|
rexbidv |
|
| 18 |
14 17
|
elab |
|
| 19 |
|
unopnorm |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
anbi2d |
|
| 22 |
|
breq1 |
|
| 23 |
22
|
biimparc |
|
| 24 |
21 23
|
biimtrdi |
|
| 25 |
24
|
rexlimdva |
|
| 26 |
25
|
imp |
|
| 27 |
18 26
|
sylan2b |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
28
|
adantl |
|
| 30 |
|
hne0 |
|
| 31 |
|
norm1hex |
|
| 32 |
30 31
|
sylbb |
|
| 33 |
32
|
adantr |
|
| 34 |
|
1le1 |
|
| 35 |
|
breq1 |
|
| 36 |
34 35
|
mpbiri |
|
| 37 |
36
|
a1i |
|
| 38 |
19
|
adantr |
|
| 39 |
|
eqeq2 |
|
| 40 |
39
|
adantl |
|
| 41 |
38 40
|
mpbid |
|
| 42 |
41
|
eqcomd |
|
| 43 |
42
|
ex |
|
| 44 |
37 43
|
jcad |
|
| 45 |
44
|
adantll |
|
| 46 |
45
|
reximdva |
|
| 47 |
33 46
|
mpd |
|
| 48 |
|
1ex |
|
| 49 |
|
eqeq1 |
|
| 50 |
49
|
anbi2d |
|
| 51 |
50
|
rexbidv |
|
| 52 |
48 51
|
elab |
|
| 53 |
47 52
|
sylibr |
|
| 54 |
53
|
adantr |
|
| 55 |
|
breq2 |
|
| 56 |
55
|
rspcev |
|
| 57 |
54 56
|
sylan |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
|
supxr2 |
|
| 61 |
13 29 59 60
|
syl12anc |
|
| 62 |
6 61
|
eqtrd |
|