Metamath Proof Explorer


Theorem unopbd

Description: A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion unopbd TUniOpTBndLinOp

Proof

Step Hyp Ref Expression
1 unoplin TUniOpTLinOp
2 unopf1o TUniOpT:1-1 onto
3 f1of T:1-1 ontoT:
4 2 3 syl TUniOpT:
5 nmop0h =0T:normopT=0
6 0re 0
7 5 6 eqeltrdi =0T:normopT
8 4 7 sylan2 =0TUniOpnormopT
9 df-ne 0¬=0
10 nmopun 0TUniOpnormopT=1
11 1re 1
12 10 11 eqeltrdi 0TUniOpnormopT
13 9 12 sylanbr ¬=0TUniOpnormopT
14 8 13 pm2.61ian TUniOpnormopT
15 elbdop2 TBndLinOpTLinOpnormopT
16 1 14 15 sylanbrc TUniOpTBndLinOp