| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
|- ( T e. UniOp -> T e. LinOp ) |
| 2 |
|
unopf1o |
|- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
| 3 |
|
f1of |
|- ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H ) |
| 4 |
2 3
|
syl |
|- ( T e. UniOp -> T : ~H --> ~H ) |
| 5 |
|
nmop0h |
|- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 ) |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
5 6
|
eqeltrdi |
|- ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) e. RR ) |
| 8 |
4 7
|
sylan2 |
|- ( ( ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 9 |
|
df-ne |
|- ( ~H =/= 0H <-> -. ~H = 0H ) |
| 10 |
|
nmopun |
|- ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) = 1 ) |
| 11 |
|
1re |
|- 1 e. RR |
| 12 |
10 11
|
eqeltrdi |
|- ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 13 |
9 12
|
sylanbr |
|- ( ( -. ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR ) |
| 14 |
8 13
|
pm2.61ian |
|- ( T e. UniOp -> ( normop ` T ) e. RR ) |
| 15 |
|
elbdop2 |
|- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) ) |
| 16 |
1 14 15
|
sylanbrc |
|- ( T e. UniOp -> T e. BndLinOp ) |