| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |
| 2 |
|
unopf1o |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
| 3 |
|
f1of |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 5 |
|
nmop0h |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = 0 ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
5 6
|
eqeltrdi |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 8 |
4 7
|
sylan2 |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 9 |
|
df-ne |
⊢ ( ℋ ≠ 0ℋ ↔ ¬ ℋ = 0ℋ ) |
| 10 |
|
nmopun |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = 1 ) |
| 11 |
|
1re |
⊢ 1 ∈ ℝ |
| 12 |
10 11
|
eqeltrdi |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 13 |
9 12
|
sylanbr |
⊢ ( ( ¬ ℋ = 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 14 |
8 13
|
pm2.61ian |
⊢ ( 𝑇 ∈ UniOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 15 |
|
elbdop2 |
⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
| 16 |
1 14 15
|
sylanbrc |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp ) |