Description: Lemma for lnophmi . (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnophmlem.1 | ⊢ 𝐴 ∈ ℋ | |
| lnophmlem.2 | ⊢ 𝐵 ∈ ℋ | ||
| lnophmlem.3 | ⊢ 𝑇 ∈ LinOp | ||
| lnophmlem.4 | ⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ | ||
| Assertion | lnophmlem1 | ⊢ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophmlem.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | lnophmlem.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | lnophmlem.3 | ⊢ 𝑇 ∈ LinOp | |
| 4 | lnophmlem.4 | ⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ | |
| 5 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 7 | 5 6 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 9 | 8 | rspcv | ⊢ ( 𝐴 ∈ ℋ → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 10 | 1 4 9 | mp2 | ⊢ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ |