| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnophmlem.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
lnophmlem.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
lnophmlem.3 |
⊢ 𝑇 ∈ LinOp |
| 4 |
|
lnophmlem.4 |
⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ |
| 5 |
3
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 6 |
5
|
ffvelcdmi |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 7 |
1 6
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐴 ) ∈ ℋ |
| 8 |
5
|
ffvelcdmi |
⊢ ( 𝐵 ∈ ℋ → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
| 9 |
2 8
|
ax-mp |
⊢ ( 𝑇 ‘ 𝐵 ) ∈ ℋ |
| 10 |
2 7 1 9
|
polid2i |
⊢ ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ( ( ( 𝐵 +ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) − ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) + ( i · ( ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) − ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) ) ) ) / 4 ) |
| 11 |
2 1
|
hvcomi |
⊢ ( 𝐵 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐵 ) |
| 12 |
9 7
|
hvcomi |
⊢ ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 13 |
3
|
lnopaddi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 14 |
1 2 13
|
mp2an |
⊢ ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 15 |
12 14
|
eqtr4i |
⊢ ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) |
| 16 |
11 15
|
oveq12i |
⊢ ( ( 𝐵 +ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
| 17 |
2 1 9 7
|
hisubcomi |
⊢ ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 18 |
3
|
lnopsubi |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 19 |
1 2 18
|
mp2an |
⊢ ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 20 |
19
|
oveq2i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 21 |
17 20
|
eqtr4i |
⊢ ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 22 |
16 21
|
oveq12i |
⊢ ( ( ( 𝐵 +ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) − ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 23 |
|
ax-icn |
⊢ i ∈ ℂ |
| 24 |
23 2
|
hvmulcli |
⊢ ( i ·ℎ 𝐵 ) ∈ ℋ |
| 25 |
1 24
|
hvsubcli |
⊢ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ |
| 26 |
5
|
ffvelcdmi |
⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ → ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ∈ ℋ ) |
| 27 |
25 26
|
ax-mp |
⊢ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ∈ ℋ |
| 28 |
23 23 25 27
|
his35i |
⊢ ( ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ·ih ( i ·ℎ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 29 |
23 1 24
|
hvsubdistr1i |
⊢ ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) −ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) |
| 30 |
23 1
|
hvmulcli |
⊢ ( i ·ℎ 𝐴 ) ∈ ℋ |
| 31 |
23 24
|
hvmulcli |
⊢ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ |
| 32 |
30 31
|
hvsubvali |
⊢ ( ( i ·ℎ 𝐴 ) −ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 33 |
23 23 2
|
hvmulassi |
⊢ ( ( i · i ) ·ℎ 𝐵 ) = ( i ·ℎ ( i ·ℎ 𝐵 ) ) |
| 34 |
33
|
oveq2i |
⊢ ( - 1 ·ℎ ( ( i · i ) ·ℎ 𝐵 ) ) = ( - 1 ·ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) |
| 35 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 36 |
35
|
oveq2i |
⊢ ( - 1 · ( i · i ) ) = ( - 1 · - 1 ) |
| 37 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 38 |
37 37
|
mul2negi |
⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 39 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 40 |
36 38 39
|
3eqtri |
⊢ ( - 1 · ( i · i ) ) = 1 |
| 41 |
40
|
oveq1i |
⊢ ( ( - 1 · ( i · i ) ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) |
| 42 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 43 |
23 23
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
| 44 |
42 43 2
|
hvmulassi |
⊢ ( ( - 1 · ( i · i ) ) ·ℎ 𝐵 ) = ( - 1 ·ℎ ( ( i · i ) ·ℎ 𝐵 ) ) |
| 45 |
|
ax-hvmulid |
⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
| 46 |
2 45
|
ax-mp |
⊢ ( 1 ·ℎ 𝐵 ) = 𝐵 |
| 47 |
41 44 46
|
3eqtr3i |
⊢ ( - 1 ·ℎ ( ( i · i ) ·ℎ 𝐵 ) ) = 𝐵 |
| 48 |
34 47
|
eqtr3i |
⊢ ( - 1 ·ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) = 𝐵 |
| 49 |
48
|
oveq2i |
⊢ ( ( i ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( i ·ℎ 𝐴 ) +ℎ 𝐵 ) |
| 50 |
32 49
|
eqtri |
⊢ ( ( i ·ℎ 𝐴 ) −ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) +ℎ 𝐵 ) |
| 51 |
30 2
|
hvcomi |
⊢ ( ( i ·ℎ 𝐴 ) +ℎ 𝐵 ) = ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) |
| 52 |
29 50 51
|
3eqtri |
⊢ ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) |
| 53 |
52
|
fveq2i |
⊢ ( 𝑇 ‘ ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( 𝑇 ‘ ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ) |
| 54 |
3
|
lnopmuli |
⊢ ( ( i ∈ ℂ ∧ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ ) → ( 𝑇 ‘ ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( i ·ℎ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 55 |
23 25 54
|
mp2an |
⊢ ( 𝑇 ‘ ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( i ·ℎ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 56 |
3
|
lnopaddmuli |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 57 |
23 2 1 56
|
mp3an |
⊢ ( 𝑇 ‘ ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 58 |
53 55 57
|
3eqtr3i |
⊢ ( i ·ℎ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 59 |
52 58
|
oveq12i |
⊢ ( ( i ·ℎ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ·ih ( i ·ℎ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 60 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
| 61 |
60
|
oveq2i |
⊢ ( i · ( ∗ ‘ i ) ) = ( i · - i ) |
| 62 |
23 23
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
| 63 |
35
|
negeqi |
⊢ - ( i · i ) = - - 1 |
| 64 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 65 |
63 64
|
eqtri |
⊢ - ( i · i ) = 1 |
| 66 |
61 62 65
|
3eqtri |
⊢ ( i · ( ∗ ‘ i ) ) = 1 |
| 67 |
66
|
oveq1i |
⊢ ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( 1 · ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 68 |
25 1 3 4
|
lnophmlem1 |
⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ∈ ℝ |
| 69 |
68
|
recni |
⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ∈ ℂ |
| 70 |
69
|
mullidi |
⊢ ( 1 · ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 71 |
67 70
|
eqtri |
⊢ ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 72 |
28 59 71
|
3eqtr3i |
⊢ ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) = ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 73 |
23 7
|
hvmulcli |
⊢ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ |
| 74 |
2 30 9 73
|
hisubcomi |
⊢ ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) = ( ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) ·ih ( ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 75 |
35
|
oveq1i |
⊢ ( ( i · i ) ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐵 ) |
| 76 |
33 75
|
eqtr3i |
⊢ ( i ·ℎ ( i ·ℎ 𝐵 ) ) = ( - 1 ·ℎ 𝐵 ) |
| 77 |
76
|
oveq2i |
⊢ ( ( i ·ℎ 𝐴 ) +ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 78 |
23 1 24
|
hvdistr1i |
⊢ ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) +ℎ ( i ·ℎ ( i ·ℎ 𝐵 ) ) ) |
| 79 |
30 2
|
hvsubvali |
⊢ ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) = ( ( i ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 80 |
77 78 79
|
3eqtr4i |
⊢ ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) |
| 81 |
80
|
fveq2i |
⊢ ( 𝑇 ‘ ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( 𝑇 ‘ ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) ) |
| 82 |
1 24
|
hvaddcli |
⊢ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ |
| 83 |
3
|
lnopmuli |
⊢ ( ( i ∈ ℂ ∧ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ ) → ( 𝑇 ‘ ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 84 |
23 82 83
|
mp2an |
⊢ ( 𝑇 ‘ ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 85 |
3
|
lnopmulsubi |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) ) = ( ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 86 |
23 1 2 85
|
mp3an |
⊢ ( 𝑇 ‘ ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) ) = ( ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) −ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 87 |
81 84 86
|
3eqtr3i |
⊢ ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) −ℎ ( 𝑇 ‘ 𝐵 ) ) |
| 88 |
80 87
|
oveq12i |
⊢ ( ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ·ih ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( ( i ·ℎ 𝐴 ) −ℎ 𝐵 ) ·ih ( ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 89 |
74 88
|
eqtr4i |
⊢ ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) = ( ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ·ih ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 90 |
5
|
ffvelcdmi |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ∈ ℋ → ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ∈ ℋ ) |
| 91 |
82 90
|
ax-mp |
⊢ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ∈ ℋ |
| 92 |
23 23 82 91
|
his35i |
⊢ ( ( i ·ℎ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ·ih ( i ·ℎ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 93 |
66
|
oveq1i |
⊢ ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( 1 · ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 94 |
82 1 3 4
|
lnophmlem1 |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ∈ ℝ |
| 95 |
94
|
recni |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ∈ ℂ |
| 96 |
95
|
mullidi |
⊢ ( 1 · ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 97 |
93 96
|
eqtri |
⊢ ( ( i · ( ∗ ‘ i ) ) · ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 98 |
89 92 97
|
3eqtri |
⊢ ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) = ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) |
| 99 |
72 98
|
oveq12i |
⊢ ( ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) − ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) ) = ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 100 |
99
|
oveq2i |
⊢ ( i · ( ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) − ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) ) ) = ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 101 |
22 100
|
oveq12i |
⊢ ( ( ( ( 𝐵 +ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) − ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) + ( i · ( ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) − ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) |
| 102 |
101
|
oveq1i |
⊢ ( ( ( ( ( 𝐵 +ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) − ( ( 𝐵 −ℎ 𝐴 ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) + ( i · ( ( ( 𝐵 +ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) − ( ( 𝐵 −ℎ ( i ·ℎ 𝐴 ) ) ·ih ( ( 𝑇 ‘ 𝐵 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) ) ) ) / 4 ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) / 4 ) |
| 103 |
10 102
|
eqtri |
⊢ ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) / 4 ) |
| 104 |
103
|
fveq2i |
⊢ ( ∗ ‘ ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) ) = ( ∗ ‘ ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) / 4 ) ) |
| 105 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 106 |
1 2
|
hvaddcli |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 107 |
106 1 3 4
|
lnophmlem1 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) ∈ ℝ |
| 108 |
1 2
|
hvsubcli |
⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 109 |
108 1 3 4
|
lnophmlem1 |
⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ∈ ℝ |
| 110 |
107 109
|
resubcli |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) ∈ ℝ |
| 111 |
110
|
recni |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) ∈ ℂ |
| 112 |
68 94
|
resubcli |
⊢ ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ∈ ℝ |
| 113 |
112
|
recni |
⊢ ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ∈ ℂ |
| 114 |
23 113
|
mulcli |
⊢ ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ∈ ℂ |
| 115 |
111 114
|
addcli |
⊢ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ∈ ℂ |
| 116 |
|
4re |
⊢ 4 ∈ ℝ |
| 117 |
116
|
recni |
⊢ 4 ∈ ℂ |
| 118 |
115 117
|
cjdivi |
⊢ ( 4 ≠ 0 → ( ∗ ‘ ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) / 4 ) ) = ( ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) / ( ∗ ‘ 4 ) ) ) |
| 119 |
105 118
|
ax-mp |
⊢ ( ∗ ‘ ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) / 4 ) ) = ( ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) / ( ∗ ‘ 4 ) ) |
| 120 |
|
cjreim |
⊢ ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) ∈ ℝ ∧ ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ∈ ℝ ) → ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) − ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) |
| 121 |
110 112 120
|
mp2an |
⊢ ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) − ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) |
| 122 |
82 2 3 4
|
lnophmlem1 |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ∈ ℝ |
| 123 |
68 122
|
resubcli |
⊢ ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ∈ ℝ |
| 124 |
123
|
recni |
⊢ ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ∈ ℂ |
| 125 |
23 124
|
mulcli |
⊢ ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ∈ ℂ |
| 126 |
111 125
|
negsubi |
⊢ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + - ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) − ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) |
| 127 |
121 126
|
eqtr4i |
⊢ ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + - ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) |
| 128 |
23 113
|
mulneg2i |
⊢ ( i · - ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = - ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 129 |
69 95
|
negsubdi2i |
⊢ - ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) |
| 130 |
129
|
oveq2i |
⊢ ( i · - ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 131 |
128 130
|
eqtr3i |
⊢ - ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) |
| 132 |
131
|
oveq2i |
⊢ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + - ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) |
| 133 |
14
|
oveq2i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 134 |
133 20
|
oveq12i |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 135 |
3
|
lnopaddmuli |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 136 |
23 1 2 135
|
mp3an |
⊢ ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 137 |
136
|
oveq2i |
⊢ ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 138 |
3
|
lnopsubmuli |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 139 |
23 1 2 138
|
mp3an |
⊢ ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 140 |
139
|
oveq2i |
⊢ ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) = ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 141 |
137 140
|
oveq12i |
⊢ ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) = ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) |
| 142 |
141
|
oveq2i |
⊢ ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) = ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) |
| 143 |
134 142
|
oveq12i |
⊢ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) ) |
| 144 |
127 132 143
|
3eqtri |
⊢ ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) = ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) ) |
| 145 |
|
cjre |
⊢ ( 4 ∈ ℝ → ( ∗ ‘ 4 ) = 4 ) |
| 146 |
116 145
|
ax-mp |
⊢ ( ∗ ‘ 4 ) = 4 |
| 147 |
144 146
|
oveq12i |
⊢ ( ( ∗ ‘ ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ) ) − ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( 𝑇 ‘ ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ) ) ) ) ) ) / ( ∗ ‘ 4 ) ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) ) / 4 ) |
| 148 |
104 119 147
|
3eqtrri |
⊢ ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) ) / 4 ) = ( ∗ ‘ ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 149 |
1 9 2 7
|
polid2i |
⊢ ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) + ( i · ( ( ( 𝐴 +ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) +ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) − ( ( 𝐴 −ℎ ( i ·ℎ 𝐵 ) ) ·ih ( ( 𝑇 ‘ 𝐴 ) −ℎ ( i ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) ) ) ) ) / 4 ) |
| 150 |
7 2
|
his1i |
⊢ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 151 |
148 149 150
|
3eqtr4i |
⊢ ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) |