| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnophmlem.1 |  |-  A e. ~H | 
						
							| 2 |  | lnophmlem.2 |  |-  B e. ~H | 
						
							| 3 |  | lnophmlem.3 |  |-  T e. LinOp | 
						
							| 4 |  | lnophmlem.4 |  |-  A. x e. ~H ( x .ih ( T ` x ) ) e. RR | 
						
							| 5 | 3 | lnopfi |  |-  T : ~H --> ~H | 
						
							| 6 | 5 | ffvelcdmi |  |-  ( A e. ~H -> ( T ` A ) e. ~H ) | 
						
							| 7 | 1 6 | ax-mp |  |-  ( T ` A ) e. ~H | 
						
							| 8 | 5 | ffvelcdmi |  |-  ( B e. ~H -> ( T ` B ) e. ~H ) | 
						
							| 9 | 2 8 | ax-mp |  |-  ( T ` B ) e. ~H | 
						
							| 10 | 2 7 1 9 | polid2i |  |-  ( B .ih ( T ` A ) ) = ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) | 
						
							| 11 | 2 1 | hvcomi |  |-  ( B +h A ) = ( A +h B ) | 
						
							| 12 | 9 7 | hvcomi |  |-  ( ( T ` B ) +h ( T ` A ) ) = ( ( T ` A ) +h ( T ` B ) ) | 
						
							| 13 | 3 | lnopaddi |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) | 
						
							| 14 | 1 2 13 | mp2an |  |-  ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) | 
						
							| 15 | 12 14 | eqtr4i |  |-  ( ( T ` B ) +h ( T ` A ) ) = ( T ` ( A +h B ) ) | 
						
							| 16 | 11 15 | oveq12i |  |-  ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) = ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) | 
						
							| 17 | 2 1 9 7 | hisubcomi |  |-  ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) | 
						
							| 18 | 3 | lnopsubi |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) ) | 
						
							| 19 | 1 2 18 | mp2an |  |-  ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) | 
						
							| 20 | 19 | oveq2i |  |-  ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) | 
						
							| 21 | 17 20 | eqtr4i |  |-  ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) | 
						
							| 22 | 16 21 | oveq12i |  |-  ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) = ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) | 
						
							| 23 |  | ax-icn |  |-  _i e. CC | 
						
							| 24 | 23 2 | hvmulcli |  |-  ( _i .h B ) e. ~H | 
						
							| 25 | 1 24 | hvsubcli |  |-  ( A -h ( _i .h B ) ) e. ~H | 
						
							| 26 | 5 | ffvelcdmi |  |-  ( ( A -h ( _i .h B ) ) e. ~H -> ( T ` ( A -h ( _i .h B ) ) ) e. ~H ) | 
						
							| 27 | 25 26 | ax-mp |  |-  ( T ` ( A -h ( _i .h B ) ) ) e. ~H | 
						
							| 28 | 23 23 25 27 | his35i |  |-  ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) | 
						
							| 29 | 23 1 24 | hvsubdistr1i |  |-  ( _i .h ( A -h ( _i .h B ) ) ) = ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) | 
						
							| 30 | 23 1 | hvmulcli |  |-  ( _i .h A ) e. ~H | 
						
							| 31 | 23 24 | hvmulcli |  |-  ( _i .h ( _i .h B ) ) e. ~H | 
						
							| 32 | 30 31 | hvsubvali |  |-  ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) | 
						
							| 33 | 23 23 2 | hvmulassi |  |-  ( ( _i x. _i ) .h B ) = ( _i .h ( _i .h B ) ) | 
						
							| 34 | 33 | oveq2i |  |-  ( -u 1 .h ( ( _i x. _i ) .h B ) ) = ( -u 1 .h ( _i .h ( _i .h B ) ) ) | 
						
							| 35 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 36 | 35 | oveq2i |  |-  ( -u 1 x. ( _i x. _i ) ) = ( -u 1 x. -u 1 ) | 
						
							| 37 |  | ax-1cn |  |-  1 e. CC | 
						
							| 38 | 37 37 | mul2negi |  |-  ( -u 1 x. -u 1 ) = ( 1 x. 1 ) | 
						
							| 39 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 40 | 36 38 39 | 3eqtri |  |-  ( -u 1 x. ( _i x. _i ) ) = 1 | 
						
							| 41 | 40 | oveq1i |  |-  ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( 1 .h B ) | 
						
							| 42 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 43 | 23 23 | mulcli |  |-  ( _i x. _i ) e. CC | 
						
							| 44 | 42 43 2 | hvmulassi |  |-  ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( -u 1 .h ( ( _i x. _i ) .h B ) ) | 
						
							| 45 |  | ax-hvmulid |  |-  ( B e. ~H -> ( 1 .h B ) = B ) | 
						
							| 46 | 2 45 | ax-mp |  |-  ( 1 .h B ) = B | 
						
							| 47 | 41 44 46 | 3eqtr3i |  |-  ( -u 1 .h ( ( _i x. _i ) .h B ) ) = B | 
						
							| 48 | 34 47 | eqtr3i |  |-  ( -u 1 .h ( _i .h ( _i .h B ) ) ) = B | 
						
							| 49 | 48 | oveq2i |  |-  ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) = ( ( _i .h A ) +h B ) | 
						
							| 50 | 32 49 | eqtri |  |-  ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h B ) | 
						
							| 51 | 30 2 | hvcomi |  |-  ( ( _i .h A ) +h B ) = ( B +h ( _i .h A ) ) | 
						
							| 52 | 29 50 51 | 3eqtri |  |-  ( _i .h ( A -h ( _i .h B ) ) ) = ( B +h ( _i .h A ) ) | 
						
							| 53 | 52 | fveq2i |  |-  ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( T ` ( B +h ( _i .h A ) ) ) | 
						
							| 54 | 3 | lnopmuli |  |-  ( ( _i e. CC /\ ( A -h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) | 
						
							| 55 | 23 25 54 | mp2an |  |-  ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) | 
						
							| 56 | 3 | lnopaddmuli |  |-  ( ( _i e. CC /\ B e. ~H /\ A e. ~H ) -> ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) | 
						
							| 57 | 23 2 1 56 | mp3an |  |-  ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) | 
						
							| 58 | 53 55 57 | 3eqtr3i |  |-  ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) | 
						
							| 59 | 52 58 | oveq12i |  |-  ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) | 
						
							| 60 |  | cji |  |-  ( * ` _i ) = -u _i | 
						
							| 61 | 60 | oveq2i |  |-  ( _i x. ( * ` _i ) ) = ( _i x. -u _i ) | 
						
							| 62 | 23 23 | mulneg2i |  |-  ( _i x. -u _i ) = -u ( _i x. _i ) | 
						
							| 63 | 35 | negeqi |  |-  -u ( _i x. _i ) = -u -u 1 | 
						
							| 64 |  | negneg1e1 |  |-  -u -u 1 = 1 | 
						
							| 65 | 63 64 | eqtri |  |-  -u ( _i x. _i ) = 1 | 
						
							| 66 | 61 62 65 | 3eqtri |  |-  ( _i x. ( * ` _i ) ) = 1 | 
						
							| 67 | 66 | oveq1i |  |-  ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) | 
						
							| 68 | 25 1 3 4 | lnophmlem1 |  |-  ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. RR | 
						
							| 69 | 68 | recni |  |-  ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. CC | 
						
							| 70 | 69 | mullidi |  |-  ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) | 
						
							| 71 | 67 70 | eqtri |  |-  ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) | 
						
							| 72 | 28 59 71 | 3eqtr3i |  |-  ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) | 
						
							| 73 | 23 7 | hvmulcli |  |-  ( _i .h ( T ` A ) ) e. ~H | 
						
							| 74 | 2 30 9 73 | hisubcomi |  |-  ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) | 
						
							| 75 | 35 | oveq1i |  |-  ( ( _i x. _i ) .h B ) = ( -u 1 .h B ) | 
						
							| 76 | 33 75 | eqtr3i |  |-  ( _i .h ( _i .h B ) ) = ( -u 1 .h B ) | 
						
							| 77 | 76 | oveq2i |  |-  ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) | 
						
							| 78 | 23 1 24 | hvdistr1i |  |-  ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) | 
						
							| 79 | 30 2 | hvsubvali |  |-  ( ( _i .h A ) -h B ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) | 
						
							| 80 | 77 78 79 | 3eqtr4i |  |-  ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) -h B ) | 
						
							| 81 | 80 | fveq2i |  |-  ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( T ` ( ( _i .h A ) -h B ) ) | 
						
							| 82 | 1 24 | hvaddcli |  |-  ( A +h ( _i .h B ) ) e. ~H | 
						
							| 83 | 3 | lnopmuli |  |-  ( ( _i e. CC /\ ( A +h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) | 
						
							| 84 | 23 82 83 | mp2an |  |-  ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) | 
						
							| 85 | 3 | lnopmulsubi |  |-  ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) | 
						
							| 86 | 23 1 2 85 | mp3an |  |-  ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) | 
						
							| 87 | 81 84 86 | 3eqtr3i |  |-  ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) | 
						
							| 88 | 80 87 | oveq12i |  |-  ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) | 
						
							| 89 | 74 88 | eqtr4i |  |-  ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) | 
						
							| 90 | 5 | ffvelcdmi |  |-  ( ( A +h ( _i .h B ) ) e. ~H -> ( T ` ( A +h ( _i .h B ) ) ) e. ~H ) | 
						
							| 91 | 82 90 | ax-mp |  |-  ( T ` ( A +h ( _i .h B ) ) ) e. ~H | 
						
							| 92 | 23 23 82 91 | his35i |  |-  ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) | 
						
							| 93 | 66 | oveq1i |  |-  ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) | 
						
							| 94 | 82 1 3 4 | lnophmlem1 |  |-  ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR | 
						
							| 95 | 94 | recni |  |-  ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. CC | 
						
							| 96 | 95 | mullidi |  |-  ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) | 
						
							| 97 | 93 96 | eqtri |  |-  ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) | 
						
							| 98 | 89 92 97 | 3eqtri |  |-  ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) | 
						
							| 99 | 72 98 | oveq12i |  |-  ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) = ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) | 
						
							| 100 | 99 | oveq2i |  |-  ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) = ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) | 
						
							| 101 | 22 100 | oveq12i |  |-  ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) | 
						
							| 102 | 101 | oveq1i |  |-  ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) | 
						
							| 103 | 10 102 | eqtri |  |-  ( B .ih ( T ` A ) ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) | 
						
							| 104 | 103 | fveq2i |  |-  ( * ` ( B .ih ( T ` A ) ) ) = ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) | 
						
							| 105 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 106 | 1 2 | hvaddcli |  |-  ( A +h B ) e. ~H | 
						
							| 107 | 106 1 3 4 | lnophmlem1 |  |-  ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) e. RR | 
						
							| 108 | 1 2 | hvsubcli |  |-  ( A -h B ) e. ~H | 
						
							| 109 | 108 1 3 4 | lnophmlem1 |  |-  ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) e. RR | 
						
							| 110 | 107 109 | resubcli |  |-  ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR | 
						
							| 111 | 110 | recni |  |-  ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. CC | 
						
							| 112 | 68 94 | resubcli |  |-  ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR | 
						
							| 113 | 112 | recni |  |-  ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC | 
						
							| 114 | 23 113 | mulcli |  |-  ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC | 
						
							| 115 | 111 114 | addcli |  |-  ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) e. CC | 
						
							| 116 |  | 4re |  |-  4 e. RR | 
						
							| 117 | 116 | recni |  |-  4 e. CC | 
						
							| 118 | 115 117 | cjdivi |  |-  ( 4 =/= 0 -> ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) ) | 
						
							| 119 | 105 118 | ax-mp |  |-  ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) | 
						
							| 120 |  | cjreim |  |-  ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR /\ ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR ) -> ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) | 
						
							| 121 | 110 112 120 | mp2an |  |-  ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) | 
						
							| 122 | 82 2 3 4 | lnophmlem1 |  |-  ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR | 
						
							| 123 | 68 122 | resubcli |  |-  ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR | 
						
							| 124 | 123 | recni |  |-  ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC | 
						
							| 125 | 23 124 | mulcli |  |-  ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC | 
						
							| 126 | 111 125 | negsubi |  |-  ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) | 
						
							| 127 | 121 126 | eqtr4i |  |-  ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) | 
						
							| 128 | 23 113 | mulneg2i |  |-  ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) | 
						
							| 129 | 69 95 | negsubdi2i |  |-  -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) | 
						
							| 130 | 129 | oveq2i |  |-  ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) | 
						
							| 131 | 128 130 | eqtr3i |  |-  -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) | 
						
							| 132 | 131 | oveq2i |  |-  ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) | 
						
							| 133 | 14 | oveq2i |  |-  ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) = ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) | 
						
							| 134 | 133 20 | oveq12i |  |-  ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) = ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) | 
						
							| 135 | 3 | lnopaddmuli |  |-  ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) | 
						
							| 136 | 23 1 2 135 | mp3an |  |-  ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) | 
						
							| 137 | 136 | oveq2i |  |-  ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) | 
						
							| 138 | 3 | lnopsubmuli |  |-  ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) | 
						
							| 139 | 23 1 2 138 | mp3an |  |-  ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) | 
						
							| 140 | 139 | oveq2i |  |-  ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) | 
						
							| 141 | 137 140 | oveq12i |  |-  ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) | 
						
							| 142 | 141 | oveq2i |  |-  ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) | 
						
							| 143 | 134 142 | oveq12i |  |-  ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) | 
						
							| 144 | 127 132 143 | 3eqtri |  |-  ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) | 
						
							| 145 |  | cjre |  |-  ( 4 e. RR -> ( * ` 4 ) = 4 ) | 
						
							| 146 | 116 145 | ax-mp |  |-  ( * ` 4 ) = 4 | 
						
							| 147 | 144 146 | oveq12i |  |-  ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) | 
						
							| 148 | 104 119 147 | 3eqtrri |  |-  ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) = ( * ` ( B .ih ( T ` A ) ) ) | 
						
							| 149 | 1 9 2 7 | polid2i |  |-  ( A .ih ( T ` B ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) | 
						
							| 150 | 7 2 | his1i |  |-  ( ( T ` A ) .ih B ) = ( * ` ( B .ih ( T ` A ) ) ) | 
						
							| 151 | 148 149 150 | 3eqtr4i |  |-  ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) |