| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopl.1 |
|- T e. LinOp |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
1
|
lnopli |
|- ( ( 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) ) |
| 4 |
2 3
|
mp3an1 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) ) |
| 5 |
|
ax-hvmulid |
|- ( A e. ~H -> ( 1 .h A ) = A ) |
| 6 |
5
|
fvoveq1d |
|- ( A e. ~H -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
| 8 |
1
|
lnopfi |
|- T : ~H --> ~H |
| 9 |
8
|
ffvelcdmi |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 10 |
|
ax-hvmulid |
|- ( ( T ` A ) e. ~H -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) |
| 11 |
9 10
|
syl |
|- ( A e. ~H -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) |
| 12 |
11
|
adantr |
|- ( ( A e. ~H /\ B e. ~H ) -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) |
| 13 |
12
|
oveq1d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |
| 14 |
4 7 13
|
3eqtr3d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |