Metamath Proof Explorer


Theorem lnopsubi

Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 𝑇 ∈ LinOp
Assertion lnopsubi ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 𝐵 ) ) = ( ( 𝑇𝐴 ) − ( 𝑇𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1 𝑇 ∈ LinOp
2 neg1cn - 1 ∈ ℂ
3 1 lnopaddmuli ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( 𝑇𝐴 ) + ( - 1 · ( 𝑇𝐵 ) ) ) )
4 2 3 mp3an1 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( 𝑇𝐴 ) + ( - 1 · ( 𝑇𝐵 ) ) ) )
5 hvsubval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
6 5 fveq2d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) )
7 1 lnopfi 𝑇 : ℋ ⟶ ℋ
8 7 ffvelrni ( 𝐴 ∈ ℋ → ( 𝑇𝐴 ) ∈ ℋ )
9 7 ffvelrni ( 𝐵 ∈ ℋ → ( 𝑇𝐵 ) ∈ ℋ )
10 hvsubval ( ( ( 𝑇𝐴 ) ∈ ℋ ∧ ( 𝑇𝐵 ) ∈ ℋ ) → ( ( 𝑇𝐴 ) − ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) + ( - 1 · ( 𝑇𝐵 ) ) ) )
11 8 9 10 syl2an ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇𝐴 ) − ( 𝑇𝐵 ) ) = ( ( 𝑇𝐴 ) + ( - 1 · ( 𝑇𝐵 ) ) ) )
12 4 6 11 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 𝐵 ) ) = ( ( 𝑇𝐴 ) − ( 𝑇𝐵 ) ) )