Metamath Proof Explorer


Theorem lnopsubi

Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 TLinOp
Assertion lnopsubi ABTA-B=TA-TB

Proof

Step Hyp Ref Expression
1 lnopl.1 TLinOp
2 neg1cn 1
3 1 lnopaddmuli 1ABTA+-1B=TA+-1TB
4 2 3 mp3an1 ABTA+-1B=TA+-1TB
5 hvsubval ABA-B=A+-1B
6 5 fveq2d ABTA-B=TA+-1B
7 1 lnopfi T:
8 7 ffvelcdmi ATA
9 7 ffvelcdmi BTB
10 hvsubval TATBTA-TB=TA+-1TB
11 8 9 10 syl2an ABTA-TB=TA+-1TB
12 4 6 11 3eqtr4d ABTA-B=TA-TB