Metamath Proof Explorer


Theorem nmop0h

Description: The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ~H =/= 0H in nmopun .) (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmop0h =0T:normopT=0

Proof

Step Hyp Ref Expression
1 df-ch0 0=0
2 1 eqeq2i =0=0
3 feq3 =0T:T:0
4 2 3 sylbi =0T:T:0
5 ax-hv0cl 0
6 5 elexi 0V
7 6 fconst2 T:0T=×0
8 df0op2 0hop=×0
9 1 xpeq2i ×0=×0
10 8 9 eqtri 0hop=×0
11 10 eqeq2i T=0hopT=×0
12 7 11 bitr4i T:0T=0hop
13 4 12 bitrdi =0T:T=0hop
14 13 biimpa =0T:T=0hop
15 14 fveq2d =0T:normopT=normop0hop
16 nmop0 normop0hop=0
17 15 16 eqtrdi =0T:normopT=0