Description: The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ~H =/= 0H in nmopun .) (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nmop0h | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 | |
|
2 | 1 | eqeq2i | |
3 | feq3 | |
|
4 | 2 3 | sylbi | |
5 | ax-hv0cl | |
|
6 | 5 | elexi | |
7 | 6 | fconst2 | |
8 | df0op2 | |
|
9 | 1 | xpeq2i | |
10 | 8 9 | eqtri | |
11 | 10 | eqeq2i | |
12 | 7 11 | bitr4i | |
13 | 4 12 | bitrdi | |
14 | 13 | biimpa | |
15 | 14 | fveq2d | |
16 | nmop0 | |
|
17 | 15 16 | eqtrdi | |