| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p |  | 
						
							| 2 |  | tglngval.l |  | 
						
							| 3 |  | tglngval.i |  | 
						
							| 4 |  | tglngval.g |  | 
						
							| 5 |  | tglngval.x |  | 
						
							| 6 |  | tglngval.y |  | 
						
							| 7 |  | tgcolg.z |  | 
						
							| 8 |  | lnxfr.r |  | 
						
							| 9 |  | lnxfr.a |  | 
						
							| 10 |  | lnxfr.b |  | 
						
							| 11 |  | lnxfr.c |  | 
						
							| 12 |  | lnxfr.1 |  | 
						
							| 13 |  | lnxfr.2 |  | 
						
							| 14 | 4 | adantr |  | 
						
							| 15 | 9 | adantr |  | 
						
							| 16 | 11 | adantr |  | 
						
							| 17 | 10 | adantr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 5 | adantr |  | 
						
							| 20 | 6 | adantr |  | 
						
							| 21 | 7 | adantr |  | 
						
							| 22 | 13 | adantr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 1 18 3 8 14 19 20 21 15 17 16 22 23 | tgbtwnxfr |  | 
						
							| 25 | 1 2 3 14 15 16 17 24 | btwncolg1 |  | 
						
							| 26 | 4 | adantr |  | 
						
							| 27 | 9 | adantr |  | 
						
							| 28 | 11 | adantr |  | 
						
							| 29 | 10 | adantr |  | 
						
							| 30 | 6 | adantr |  | 
						
							| 31 | 5 | adantr |  | 
						
							| 32 | 7 | adantr |  | 
						
							| 33 | 13 | adantr |  | 
						
							| 34 | 1 18 3 8 26 31 30 32 27 29 28 33 | cgr3swap12 |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 1 18 3 8 26 30 31 32 29 27 28 34 35 | tgbtwnxfr |  | 
						
							| 37 | 1 2 3 26 27 28 29 36 | btwncolg2 |  | 
						
							| 38 | 4 | adantr |  | 
						
							| 39 | 9 | adantr |  | 
						
							| 40 | 11 | adantr |  | 
						
							| 41 | 10 | adantr |  | 
						
							| 42 | 5 | adantr |  | 
						
							| 43 | 7 | adantr |  | 
						
							| 44 | 6 | adantr |  | 
						
							| 45 | 13 | adantr |  | 
						
							| 46 | 1 18 3 8 38 42 44 43 39 41 40 45 | cgr3swap23 |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 1 18 3 8 38 42 43 44 39 40 41 46 47 | tgbtwnxfr |  | 
						
							| 49 | 1 2 3 38 39 40 41 48 | btwncolg3 |  | 
						
							| 50 | 1 2 3 4 5 7 6 | tgcolg |  | 
						
							| 51 | 12 50 | mpbid |  | 
						
							| 52 | 25 37 49 51 | mpjao3dan |  |