Metamath Proof Explorer


Theorem logf1o

Description: The natural logarithm function maps the nonzero complex numbers one-to-one onto its range. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logf1o log:01-1 ontoranlog

Proof

Step Hyp Ref Expression
1 eff1o2 expranlog:ranlog1-1 onto0
2 f1ocnv expranlog:ranlog1-1 onto0expranlog-1:01-1 ontoranlog
3 1 2 ax-mp expranlog-1:01-1 ontoranlog
4 dflog2 log=expranlog-1
5 f1oeq1 log=expranlog-1log:01-1 ontoranlogexpranlog-1:01-1 ontoranlog
6 4 5 ax-mp log:01-1 ontoranlogexpranlog-1:01-1 ontoranlog
7 3 6 mpbir log:01-1 ontoranlog