Metamath Proof Explorer


Theorem lplnnelln

Description: No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012)

Ref Expression
Hypotheses lplnnelln.n N=LLinesK
lplnnelln.p P=LPlanesK
Assertion lplnnelln KHLXP¬XN

Proof

Step Hyp Ref Expression
1 lplnnelln.n N=LLinesK
2 lplnnelln.p P=LPlanesK
3 hllat KHLKLat
4 eqid BaseK=BaseK
5 4 2 lplnbase XPXBaseK
6 eqid K=K
7 4 6 latref KLatXBaseKXKX
8 3 5 7 syl2an KHLXPXKX
9 6 1 2 lplnnlelln KHLXPXN¬XKX
10 9 3expia KHLXPXN¬XKX
11 8 10 mt2d KHLXP¬XN