Metamath Proof Explorer


Theorem lsat2el

Description: Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lsat2el.o 0 ˙ = 0 W
lsat2el.a A = LSAtoms W
lsat2el.w φ W LVec
lsat2el.p φ P A
lsat2el.q φ Q A
lsat2el.x φ X 0 ˙
lsat2el.x1 φ X P
lsat2el.x2 φ X Q
Assertion lsat2el φ P = Q

Proof

Step Hyp Ref Expression
1 lsat2el.o 0 ˙ = 0 W
2 lsat2el.a A = LSAtoms W
3 lsat2el.w φ W LVec
4 lsat2el.p φ P A
5 lsat2el.q φ Q A
6 lsat2el.x φ X 0 ˙
7 lsat2el.x1 φ X P
8 lsat2el.x2 φ X Q
9 eqid LSpan W = LSpan W
10 1 9 2 3 4 7 6 lsatel φ P = LSpan W X
11 1 9 2 3 5 8 6 lsatel φ Q = LSpan W X
12 10 11 eqtr4d φ P = Q