Metamath Proof Explorer


Theorem lsmdisj2r

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
lsmdisjr.i φST˙U=0˙
lsmdisj2r.i φTU=0˙
Assertion lsmdisj2r φS˙UT=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 lsmdisjr.i φST˙U=0˙
7 lsmdisj2r.i φTU=0˙
8 eqid opp𝑔G=opp𝑔G
9 8 1 oppglsm ULSSumopp𝑔GS=S˙U
10 9 ineq2i TULSSumopp𝑔GS=TS˙U
11 incom TS˙U=S˙UT
12 10 11 eqtri TULSSumopp𝑔GS=S˙UT
13 eqid LSSumopp𝑔G=LSSumopp𝑔G
14 8 oppgsubg SubGrpG=SubGrpopp𝑔G
15 4 14 eleqtrdi φUSubGrpopp𝑔G
16 3 14 eleqtrdi φTSubGrpopp𝑔G
17 2 14 eleqtrdi φSSubGrpopp𝑔G
18 8 5 oppgid 0˙=0opp𝑔G
19 8 1 oppglsm ULSSumopp𝑔GT=T˙U
20 19 ineq1i ULSSumopp𝑔GTS=T˙US
21 incom T˙US=ST˙U
22 20 21 eqtri ULSSumopp𝑔GTS=ST˙U
23 22 6 eqtrid φULSSumopp𝑔GTS=0˙
24 incom TU=UT
25 24 7 eqtr3id φUT=0˙
26 13 15 16 17 18 23 25 lsmdisj2 φTULSSumopp𝑔GS=0˙
27 12 26 eqtr3id φS˙UT=0˙