Metamath Proof Explorer


Theorem lsmdisjr

Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
lsmdisjr.i φST˙U=0˙
Assertion lsmdisjr φST=0˙SU=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 lsmdisjr.i φST˙U=0˙
7 incom ST˙U=T˙US
8 7 6 eqtr3id φT˙US=0˙
9 1 3 4 2 5 8 lsmdisj φTS=0˙US=0˙
10 incom TS=ST
11 10 eqeq1i TS=0˙ST=0˙
12 incom US=SU
13 12 eqeq1i US=0˙SU=0˙
14 11 13 anbi12i TS=0˙US=0˙ST=0˙SU=0˙
15 9 14 sylib φST=0˙SU=0˙