Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmcntz.p | |
|
lsmcntz.s | |
||
lsmcntz.t | |
||
lsmcntz.u | |
||
lsmdisj.o | |
||
lsmdisj.i | |
||
Assertion | lsmdisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | |
|
2 | lsmcntz.s | |
|
3 | lsmcntz.t | |
|
4 | lsmcntz.u | |
|
5 | lsmdisj.o | |
|
6 | lsmdisj.i | |
|
7 | 1 | lsmub1 | |
8 | 2 3 7 | syl2anc | |
9 | 8 | ssrind | |
10 | 9 6 | sseqtrd | |
11 | 5 | subg0cl | |
12 | 2 11 | syl | |
13 | 5 | subg0cl | |
14 | 4 13 | syl | |
15 | 12 14 | elind | |
16 | 15 | snssd | |
17 | 10 16 | eqssd | |
18 | 1 | lsmub2 | |
19 | 2 3 18 | syl2anc | |
20 | 19 | ssrind | |
21 | 20 6 | sseqtrd | |
22 | 5 | subg0cl | |
23 | 3 22 | syl | |
24 | 23 14 | elind | |
25 | 24 | snssd | |
26 | 21 25 | eqssd | |
27 | 17 26 | jca | |