| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  | 
						
							| 2 |  | lsmcntz.s |  | 
						
							| 3 |  | lsmcntz.t |  | 
						
							| 4 |  | lsmcntz.u |  | 
						
							| 5 |  | lsmdisj.o |  | 
						
							| 6 |  | lsmdisj.i |  | 
						
							| 7 | 1 | lsmub1 |  | 
						
							| 8 | 2 3 7 | syl2anc |  | 
						
							| 9 | 8 | ssrind |  | 
						
							| 10 | 9 6 | sseqtrd |  | 
						
							| 11 | 5 | subg0cl |  | 
						
							| 12 | 2 11 | syl |  | 
						
							| 13 | 5 | subg0cl |  | 
						
							| 14 | 4 13 | syl |  | 
						
							| 15 | 12 14 | elind |  | 
						
							| 16 | 15 | snssd |  | 
						
							| 17 | 10 16 | eqssd |  | 
						
							| 18 | 1 | lsmub2 |  | 
						
							| 19 | 2 3 18 | syl2anc |  | 
						
							| 20 | 19 | ssrind |  | 
						
							| 21 | 20 6 | sseqtrd |  | 
						
							| 22 | 5 | subg0cl |  | 
						
							| 23 | 3 22 | syl |  | 
						
							| 24 | 23 14 | elind |  | 
						
							| 25 | 24 | snssd |  | 
						
							| 26 | 21 25 | eqssd |  | 
						
							| 27 | 17 26 | jca |  |