Metamath Proof Explorer


Theorem lsmdisj

Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙=LSSumG
lsmcntz.s φSSubGrpG
lsmcntz.t φTSubGrpG
lsmcntz.u φUSubGrpG
lsmdisj.o 0˙=0G
lsmdisj.i φS˙TU=0˙
Assertion lsmdisj φSU=0˙TU=0˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙=LSSumG
2 lsmcntz.s φSSubGrpG
3 lsmcntz.t φTSubGrpG
4 lsmcntz.u φUSubGrpG
5 lsmdisj.o 0˙=0G
6 lsmdisj.i φS˙TU=0˙
7 1 lsmub1 SSubGrpGTSubGrpGSS˙T
8 2 3 7 syl2anc φSS˙T
9 8 ssrind φSUS˙TU
10 9 6 sseqtrd φSU0˙
11 5 subg0cl SSubGrpG0˙S
12 2 11 syl φ0˙S
13 5 subg0cl USubGrpG0˙U
14 4 13 syl φ0˙U
15 12 14 elind φ0˙SU
16 15 snssd φ0˙SU
17 10 16 eqssd φSU=0˙
18 1 lsmub2 SSubGrpGTSubGrpGTS˙T
19 2 3 18 syl2anc φTS˙T
20 19 ssrind φTUS˙TU
21 20 6 sseqtrd φTU0˙
22 5 subg0cl TSubGrpG0˙T
23 3 22 syl φ0˙T
24 23 14 elind φ0˙TU
25 24 snssd φ0˙TU
26 21 25 eqssd φTU=0˙
27 17 26 jca φSU=0˙TU=0˙