| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 2 |  | lsmcntz.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | lsmcntz.t | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | lsmcntz.u | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | lsmdisj.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 6 |  | lsmdisj.i | ⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } ) | 
						
							| 7 | 1 | lsmub1 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  ⊆  ( 𝑆  ⊕  𝑇 ) ) | 
						
							| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑆  ⊕  𝑇 ) ) | 
						
							| 9 | 8 | ssrind | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  ⊆  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) ) | 
						
							| 10 | 9 6 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  ⊆  {  0  } ) | 
						
							| 11 | 5 | subg0cl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑆 ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →   0   ∈  𝑆 ) | 
						
							| 13 | 5 | subg0cl | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑈 ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →   0   ∈  𝑈 ) | 
						
							| 15 | 12 14 | elind | ⊢ ( 𝜑  →   0   ∈  ( 𝑆  ∩  𝑈 ) ) | 
						
							| 16 | 15 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑆  ∩  𝑈 ) ) | 
						
							| 17 | 10 16 | eqssd | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑈 )  =  {  0  } ) | 
						
							| 18 | 1 | lsmub2 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑇  ⊆  ( 𝑆  ⊕  𝑇 ) ) | 
						
							| 19 | 2 3 18 | syl2anc | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑆  ⊕  𝑇 ) ) | 
						
							| 20 | 19 | ssrind | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ⊆  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 ) ) | 
						
							| 21 | 20 6 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  ⊆  {  0  } ) | 
						
							| 22 | 5 | subg0cl | ⊢ ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  →   0   ∈  𝑇 ) | 
						
							| 23 | 3 22 | syl | ⊢ ( 𝜑  →   0   ∈  𝑇 ) | 
						
							| 24 | 23 14 | elind | ⊢ ( 𝜑  →   0   ∈  ( 𝑇  ∩  𝑈 ) ) | 
						
							| 25 | 24 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  ( 𝑇  ∩  𝑈 ) ) | 
						
							| 26 | 21 25 | eqssd | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } ) | 
						
							| 27 | 17 26 | jca | ⊢ ( 𝜑  →  ( ( 𝑆  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑇  ∩  𝑈 )  =  {  0  } ) ) |