| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | lsmdisj.i |  |-  ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) | 
						
							| 7 | 1 | lsmub1 |  |-  ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) | 
						
							| 8 | 2 3 7 | syl2anc |  |-  ( ph -> S C_ ( S .(+) T ) ) | 
						
							| 9 | 8 | ssrind |  |-  ( ph -> ( S i^i U ) C_ ( ( S .(+) T ) i^i U ) ) | 
						
							| 10 | 9 6 | sseqtrd |  |-  ( ph -> ( S i^i U ) C_ { .0. } ) | 
						
							| 11 | 5 | subg0cl |  |-  ( S e. ( SubGrp ` G ) -> .0. e. S ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> .0. e. S ) | 
						
							| 13 | 5 | subg0cl |  |-  ( U e. ( SubGrp ` G ) -> .0. e. U ) | 
						
							| 14 | 4 13 | syl |  |-  ( ph -> .0. e. U ) | 
						
							| 15 | 12 14 | elind |  |-  ( ph -> .0. e. ( S i^i U ) ) | 
						
							| 16 | 15 | snssd |  |-  ( ph -> { .0. } C_ ( S i^i U ) ) | 
						
							| 17 | 10 16 | eqssd |  |-  ( ph -> ( S i^i U ) = { .0. } ) | 
						
							| 18 | 1 | lsmub2 |  |-  ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) | 
						
							| 19 | 2 3 18 | syl2anc |  |-  ( ph -> T C_ ( S .(+) T ) ) | 
						
							| 20 | 19 | ssrind |  |-  ( ph -> ( T i^i U ) C_ ( ( S .(+) T ) i^i U ) ) | 
						
							| 21 | 20 6 | sseqtrd |  |-  ( ph -> ( T i^i U ) C_ { .0. } ) | 
						
							| 22 | 5 | subg0cl |  |-  ( T e. ( SubGrp ` G ) -> .0. e. T ) | 
						
							| 23 | 3 22 | syl |  |-  ( ph -> .0. e. T ) | 
						
							| 24 | 23 14 | elind |  |-  ( ph -> .0. e. ( T i^i U ) ) | 
						
							| 25 | 24 | snssd |  |-  ( ph -> { .0. } C_ ( T i^i U ) ) | 
						
							| 26 | 21 25 | eqssd |  |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
							| 27 | 17 26 | jca |  |-  ( ph -> ( ( S i^i U ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |