Metamath Proof Explorer


Theorem lsmfval

Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B=BaseG
lsmfval.a +˙=+G
lsmfval.s ˙=LSSumG
Assertion lsmfval GV˙=t𝒫B,u𝒫Branxt,yux+˙y

Proof

Step Hyp Ref Expression
1 lsmfval.v B=BaseG
2 lsmfval.a +˙=+G
3 lsmfval.s ˙=LSSumG
4 elex GVGV
5 fveq2 w=GBasew=BaseG
6 5 1 eqtr4di w=GBasew=B
7 6 pweqd w=G𝒫Basew=𝒫B
8 fveq2 w=G+w=+G
9 8 2 eqtr4di w=G+w=+˙
10 9 oveqd w=Gx+wy=x+˙y
11 10 mpoeq3dv w=Gxt,yux+wy=xt,yux+˙y
12 11 rneqd w=Granxt,yux+wy=ranxt,yux+˙y
13 7 7 12 mpoeq123dv w=Gt𝒫Basew,u𝒫Basewranxt,yux+wy=t𝒫B,u𝒫Branxt,yux+˙y
14 df-lsm LSSum=wVt𝒫Basew,u𝒫Basewranxt,yux+wy
15 1 fvexi BV
16 15 pwex 𝒫BV
17 16 16 mpoex t𝒫B,u𝒫Branxt,yux+˙yV
18 13 14 17 fvmpt GVLSSumG=t𝒫B,u𝒫Branxt,yux+˙y
19 4 18 syl GVLSSumG=t𝒫B,u𝒫Branxt,yux+˙y
20 3 19 eqtrid GV˙=t𝒫B,u𝒫Branxt,yux+˙y