Metamath Proof Explorer


Theorem lsmfval

Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B = Base G
lsmfval.a + ˙ = + G
lsmfval.s ˙ = LSSum G
Assertion lsmfval G V ˙ = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y

Proof

Step Hyp Ref Expression
1 lsmfval.v B = Base G
2 lsmfval.a + ˙ = + G
3 lsmfval.s ˙ = LSSum G
4 elex G V G V
5 fveq2 w = G Base w = Base G
6 5 1 syl6eqr w = G Base w = B
7 6 pweqd w = G 𝒫 Base w = 𝒫 B
8 fveq2 w = G + w = + G
9 8 2 syl6eqr w = G + w = + ˙
10 9 oveqd w = G x + w y = x + ˙ y
11 10 mpoeq3dv w = G x t , y u x + w y = x t , y u x + ˙ y
12 11 rneqd w = G ran x t , y u x + w y = ran x t , y u x + ˙ y
13 7 7 12 mpoeq123dv w = G t 𝒫 Base w , u 𝒫 Base w ran x t , y u x + w y = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y
14 df-lsm LSSum = w V t 𝒫 Base w , u 𝒫 Base w ran x t , y u x + w y
15 1 fvexi B V
16 15 pwex 𝒫 B V
17 16 16 mpoex t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y V
18 13 14 17 fvmpt G V LSSum G = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y
19 4 18 syl G V LSSum G = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y
20 3 19 syl5eq G V ˙ = t 𝒫 B , u 𝒫 B ran x t , y u x + ˙ y