Metamath Proof Explorer


Theorem lspsnsubn0

Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015)

Ref Expression
Hypotheses lspsnsubn0.v V=BaseW
lspsnsubn0.o 0˙=0W
lspsnsubn0.m -˙=-W
lspsnsubn0.w φWLMod
lspsnsubn0.x φXV
lspsnsubn0.y φYV
lspsnsubn0.e φNXNY
Assertion lspsnsubn0 φX-˙Y0˙

Proof

Step Hyp Ref Expression
1 lspsnsubn0.v V=BaseW
2 lspsnsubn0.o 0˙=0W
3 lspsnsubn0.m -˙=-W
4 lspsnsubn0.w φWLMod
5 lspsnsubn0.x φXV
6 lspsnsubn0.y φYV
7 lspsnsubn0.e φNXNY
8 1 2 3 lmodsubeq0 WLModXVYVX-˙Y=0˙X=Y
9 4 5 6 8 syl3anc φX-˙Y=0˙X=Y
10 sneq X=YX=Y
11 10 fveq2d X=YNX=NY
12 9 11 syl6bi φX-˙Y=0˙NX=NY
13 12 necon3d φNXNYX-˙Y0˙
14 7 13 mpd φX-˙Y0˙