Metamath Proof Explorer


Theorem lssmre

Description: The subspaces of a module comprise a Moore system on the vectors of the module. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses lssacs.b B=BaseW
lssacs.s S=LSubSpW
Assertion lssmre WLModSMooreB

Proof

Step Hyp Ref Expression
1 lssacs.b B=BaseW
2 lssacs.s S=LSubSpW
3 1 2 lssss aSaB
4 velpw a𝒫BaB
5 3 4 sylibr aSa𝒫B
6 5 a1i WLModaSa𝒫B
7 6 ssrdv WLModS𝒫B
8 1 2 lss1 WLModBS
9 2 lssintcl WLModaSaaS
10 7 8 9 ismred WLModSMooreB