Metamath Proof Explorer


Theorem lssss

Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssss.v V=BaseW
lssss.s S=LSubSpW
Assertion lssss USUV

Proof

Step Hyp Ref Expression
1 lssss.v V=BaseW
2 lssss.s S=LSubSpW
3 eqid ScalarW=ScalarW
4 eqid BaseScalarW=BaseScalarW
5 eqid +W=+W
6 eqid W=W
7 3 4 1 5 6 2 islss USUVUxBaseScalarWaUbUxWa+WbU
8 7 simp1bi USUV