Metamath Proof Explorer


Theorem lt0neg2

Description: Comparison of a number and its negative to zero. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion lt0neg2 A0<AA<0

Proof

Step Hyp Ref Expression
1 0re 0
2 ltneg 0A0<AA<0
3 1 2 mpan A0<AA<0
4 neg0 0=0
5 4 breq2i A<0A<0
6 3 5 bitrdi A0<AA<0