Metamath Proof Explorer


Theorem ltaddrp2d

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φA
rpgecld.2 φB+
Assertion ltaddrp2d φA<B+A

Proof

Step Hyp Ref Expression
1 rpgecld.1 φA
2 rpgecld.2 φB+
3 1 2 ltaddrpd φA<A+B
4 1 recnd φA
5 2 rpcnd φB
6 4 5 addcomd φA+B=B+A
7 3 6 breqtrd φA<B+A