Metamath Proof Explorer


Theorem ltmulgt11d

Description: Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φA
rpgecld.2 φB+
Assertion ltmulgt11d φ1<AB<BA

Proof

Step Hyp Ref Expression
1 rpgecld.1 φA
2 rpgecld.2 φB+
3 2 rpred φB
4 2 rpgt0d φ0<B
5 ltmulgt11 BA0<B1<AB<BA
6 3 1 4 5 syl3anc φ1<AB<BA