Metamath Proof Explorer


Theorem ltmulgt11d

Description: Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion ltmulgt11d ( 𝜑 → ( 1 < 𝐴𝐵 < ( 𝐵 · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpgecld.1 ( 𝜑𝐴 ∈ ℝ )
2 rpgecld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 2 rpred ( 𝜑𝐵 ∈ ℝ )
4 2 rpgt0d ( 𝜑 → 0 < 𝐵 )
5 ltmulgt11 ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 < 𝐴𝐵 < ( 𝐵 · 𝐴 ) ) )
6 3 1 4 5 syl3anc ( 𝜑 → ( 1 < 𝐴𝐵 < ( 𝐵 · 𝐴 ) ) )