Metamath Proof Explorer


Theorem ltmulgt12d

Description: Multiplication by a number greater than 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion ltmulgt12d φ 1 < A B < A B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 2 rpred φ B
4 2 rpgt0d φ 0 < B
5 ltmulgt12 B A 0 < B 1 < A B < A B
6 3 1 4 5 syl3anc φ 1 < A B < A B