Metamath Proof Explorer


Theorem ltne

Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion ltne AA<BBA

Proof

Step Hyp Ref Expression
1 ltnr A¬A<A
2 breq2 B=AA<BA<A
3 2 notbid B=A¬A<B¬A<A
4 1 3 syl5ibrcom AB=A¬A<B
5 4 necon2ad AA<BBA
6 5 imp AA<BBA