Metamath Proof Explorer


Theorem ltnegcon2d

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltnegcon2d.3 φA<B
Assertion ltnegcon2d φB<A

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltnegcon2d.3 φA<B
4 ltnegcon2 ABA<BB<A
5 1 2 4 syl2anc φA<BB<A
6 3 5 mpbid φB<A