Metamath Proof Explorer


Theorem ltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
Assertion ltnled φA<B¬BA

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 ltnle ABA<B¬BA
4 1 2 3 syl2anc φA<B¬BA