Metamath Proof Explorer


Theorem ltrncl

Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b B=BaseK
ltrn1o.h H=LHypK
ltrn1o.t T=LTrnKW
Assertion ltrncl KVWHFTXBFXB

Proof

Step Hyp Ref Expression
1 ltrn1o.b B=BaseK
2 ltrn1o.h H=LHypK
3 ltrn1o.t T=LTrnKW
4 simp1l KVWHFTXBKV
5 eqid LAutK=LAutK
6 2 5 3 ltrnlaut KVWHFTFLAutK
7 6 3adant3 KVWHFTXBFLAutK
8 simp3 KVWHFTXBXB
9 1 5 lautcl KVFLAutKXBFXB
10 4 7 8 9 syl21anc KVWHFTXBFXB